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The Radial Heat Polynomials and Related Functions 

L. R. Bragg, Case I n s t i t u t e  of Technology 

1. Introduction. In  a lengthy paper by Rosenbloom and Widder [9 ]  and a more 

recent  paper by Widder [12], a detai led -~ study has . been - made ----+ o f  necessa ry -qd  
suf f ic ien t  conditions f o r  t h e  va l id i ty  of expansions of solut ions of t h e  heat  

i n  terms of two basic s e t s  of special  solutions: ( a )  t h e  set 

CO CO 
of heat polynomials and (b) t h e  associated s e t  {w. (x, t>] j=o . 

J cvj (x,t 13 j = O  

The elements of t h e  f irst  s e t  are defined symbolically and ana ly t ica l ly  by - 

where H.(x) i s  t h e  usual Hermite polynomial. The element w . (x , t )  of t he  
J J 

second set i s  obtained by forming t h e  Appell transform of the  vr.(x,t). 
t > 0, t h e  two sets 

(- a, m>. 

(1.1 ) show t h a t  

For 
J 

{v.(x,- t ) ]  and {wj(x,t)]  a r e  biorthogonal on 
J 

The basic theorems r e l a t ing  t o  t h e  expansions of solut ions of 

(I)  expansions i n  terms of t he  heat polynomials a r e  val id  i n  a time 

s t r i p  i n  which t h e  solution s a t i s f i e s  a Huygen's pr inc ip le  while 

(11) expansions i n  terms of t he  associated functions a r e  va l id  i n  an 

upper half-plane 

propert ies .  

coe f f i c i en t s  i n  these expansions both by r e a l  and complex evaluations. 

L2 

ge t t i ng  a t  these r e s u l t s  a r e  

source solution of (1.1)~ 

(t > u 2 0 )  i n  which t h e  solution has ce r t a in  ent i reness  

A t  t h e  same t i m e ,  these theorems give rules f o r  determining t h e  

The 

theory of such expansions i s  then examined. O f  basic importance i n  

the  decomposition of t h e  fundamental (i) 
S ( x , t )  = (4nt)-F e -x2/4t , i n  terms of these 



basic hea t  functions and 

p r inc ip l e  t o  an absolute in t eg rab i l i t y  condition on solut ions of (1.1). 
(ii) t h e  equivalence of t h e  important Huygen's 

In  t h i s  paper, we w i l l  be concerned with t h e  generalized heat  equation 
- -  - 

(1 .3  ) 

- a2/ar2 + l.l-l a/ar . The operator A P where p = 2(a+I), a 2 0, and AP = r -. 
i s  t h e  Laplacian i n  r a d i a l  coordinates when 

O f p a r t i c u l a r  i n t e r e s t  will be the  obtaining of  results analogous t o  (I) 
and (11) involving expansions of solutions of (1.3) i n  terms of t h e  two 

p = n, a pos i t ive  __ integer.  --.-I. __- 

__ .__c- 

__-- - 
basic  sets of functions r e l a t ed  t o  (1.3), t h e  r a d i a l  heat polynomials 

a3 m 
and t h e i r  Appell transforms {x '(r,t)] j=o . These sets l R j P  (r, t )] j=o j 

a r e  defined i n  terms of t h e  generalized Laguerre polynomials L(')(x) . 
Moreover, f o r  t > 0, t h e  s e t  [R '(I-,- t)] i s  biorthogonal t o  the  s e t  

[xjp(ryt)] on [ O p )  r e l a t i v e  t o  a sui table  weight factor .  Unlike the  

treatment i n  

i n t e g r a l  representation with a more complicated kernel (involving Bessel 

funct ions) ,  

kernel i n  terms of t h e  sets {R. ] and {R. ] and examine t h e  indicated 

type o f  theorems r e l a t ing  t o  representations of solutions of (1.3). 
r e s t r i c t i o n  a 1 0  - 

t h e  asymptotic bounds on the  Laguerre polynomials. 

a = - 2 

connection between t h e  functions L!-')(x2) and H (x). 

j 

j 

[ 9 ] ,  t h e  solution of ( 1 . 3 )  subject t o  u(r,O) = q ( r )  has an 

Nevertheless, w e  are able t o  give a decomposition of this 

P W P  
J J 

The 

i s  taken fo r  simplicity because of t h e  s t ruc ture  o f  

The important case 
1 can be readi ly  reduced t o  the theory i n  [ 9 ]  by means of t h e  

1 

J 2 j  
We make no attempt t o  be as detai led o r  complete i n  our treatment 

a s  were Rosenbloom and Widder. 

of coef f ic ien ts  i n  expansions a s  w e l l  a s  t h e  

For example, we omit t h e  complex evaluation 

L2 theory of such ex- 

pansions. Rather, emphasis i s  placed on t h e  differences a r i s ing  from the  

u,se of Laguerre polynomials. 

bounds on t h e  basic s e t s  of functions, t h e  kernel of t h e  i n t e g r a l  

-- 
These differences a s se r t  themselves i n  t h e  
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representat ion of solutions of (1.3), and t h e  decomposition of this kernel. 

To avoid a r epe t i t i on  with 

Huygen' s pr inc ip le  t o  an absolute in t eg rab i l i t y  condition. 

i s  made evident by reducing t h e  proof of  t h e  existence of a Poisson-Stielt jes 

i n t e g r a l  representation for  cer ta in  solutions o f  (1.3) t o  t h e  same types of 

arguments used i n  [ 9 ] .  
Tychonoff theorem f o r  solut ions of (1.3) and by establ ishing su i tab le  growth 

bounds on such solutions. 

[ 9 ] ,  w e  s t a t e  a theorem t h a t  equates t h e  
c 

T h i s  equivalence 

T h i s  i s  handled by indicat ing the  v a l i d i t y  of t h e  

It will, a t  times, be convenient t o  consider (1.3) when 2(a+1) = n,a 

pos i t i ve  integer.  For this s i tuat ion,  t h e  decomposition 

2 An = D + ... + Dn , Di 2 a / k ,  for  rectangular coordinates will be 1 
useful  i n  motivating r e l a t ions  between various functions. Some of these 

w i l l  be meaningful even i f  n fa i l s  t o  be an integer.  We occasionally 

use symbolic operators, such a s  exp(t >, f o r  expressing solut ions of (1.3) 
and t h e i r  propert ies  i n  a convenient form. 

44 
We in t e rp re t  t h i s  operator by 

(1.4) 
j =O 

whenever the  series i n  (1.4) i s  meaningful. 

operator by means of an i n t e g r a l  t o  be given i n  Section 3. 
Otherwise, we i n t e r p r e t  t h i s  

2. The Radial Heat Functions. L e t  S (r , t)  denote t h e  fundamental source 

solution of (l.3), t h a t  i s  
P 

L e t  

(r/t, - l / t ) E e ( u ) ,  we  def ine the  Appell transform [l] u of u by 

u ( r , t )  be a solution of (1.3) i n  some domain a ( u ) .  Then if 
d 

M 

u ( r , t )  = s ( r , t )  u ( r f i ,  -1/t) . 
P (2.2) 

In  terms of t h i s ,  we can specify t h e  basic s e t  of functions. Let k be 

a non-negative integer.  We define the  r a d i a l  heat po lpomia l  €$'(r,t) 
as t h e  ana ly t ic  solution of (1.3) subject t o  t h e  condition 
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u(r ,O) = ra and i t s  associated function xp(ryt) as t h e  Appell transform 

of %'(r,t). One can eas i ly  give expl ic i t  forms f o r  these. E3y (1.41, 

(2.3) 

w 
and from this one readily obtains  %'(r,t). 
information, it w i l l  be noted t h a t  exp(tA ) r , when interpreted by 

(1.4), i s  meaningful f o r  any complex p and %'(r,t) is a continuous 

Although we  w i l l  no t  use t h i s  
2k I 

I c1 

i 

I 
I function of p. Observe from (2.3) tha t  f o r  r - > 0 and t > 0, - 

For t h e  purpose of ge t t ing  a t  further propert ies  of these basic sets 
of heat  functions, such as biorthogonality, l e t  u s  now examine t h e i r  

connection with t h e  generalized Laguerre polynomials by means o f  a generating 

function. 

r a d i a l  heat  polynomials. 

ua ( r ,o )  = ear 

can be checked d i r e c t l y  i n  (1.3) tha t  

One such generating function i s  immediately avai lable  f o r  t h e  

For i f  w e  require 
2 

t o  be s a t i s f i e d  by the ana ly t ic  solution of (1.3), then it 

A comparison of t h i s  with t h e  generating function f o r  t h e  Laguerre poly- 

nomials ([4], p.189) shows t h a t  by making t h e  choices T = ,!+.at and 

X = -r /4t w e  have 2 
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cn m 

In  addition, we have formally 

A comparison of (2.6) with (2.7) then shows t h a t  

- r2/4t ) y j = 0,1,2, ... 
and this is t h e  desired connection with t h e  Laguerre polynomials. 

form of t h e  source solution, t h e  following development results: 
From t h e  

(2.9) 

By an appl icat ion of  t h e  def in i t ions  (2.2) and (2.3), w e  f i nd  t h e  

functions associated with t h e  r a d i a l  heat polynomials t o  be 

when (r/t,-l/t) i s  i n  t h e  domain #(RjP). A generating function, 

u (r,t),  f o r  these  i s  given by 
r3 

a 

j = O  
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The author uses this r e l a t ion  t o  obtain a Rodrigues' formula f o r  t h e  Laguerre 

polynomials t h a t  involves t h e  Laplacian operator [: 21. 

polynomials ([8]), p.2051, it follows by (2.8) and (2.10) t h a t  f o r  t > 0, 

Next, f'rom t h e  orthogonality re la t ions  f o r  t h e  generalized Laglrerre 

This i s  t h e  bionthogonality r e l a t ion  f o r  t h e  r a d i a l  heat f m c t i o n s  which 

permits a determination of t h e  coeff ic ients  i n  expansions of solutions of 

(1.3) i n  terms of these  basic f'unctions. 

Final ly ,  when p. i s  a pos i t ive  integer  n, we r e l a t e  these  r a d i a l  heat 

polynomials t o  t h e  usual heat polynomials. We do so by a symbolic approach. 

2 + D ~ ~ ,  D. = a/& . 
+ xn n = Dl + - * .  J j 

and wr i te  A 2 Let r2 = x1 + --. 
n 

j=1 
, it fo l lows  by (1.2) and t D j  With t h e  fac tor iza t ion  exp(tAn) = e 

(2.3) t h a t  

2)k %"(r,t) = exp(tAn)r 2k = exp(tAn) (x12+ + xn 

(2.14) 

ki& 0 
n 

I 11 

kik 0 

The choice t = - 1/4 i n  t h i s  gives a result o f  Feldheim [ 5 ]  when n = 2. 
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3. 
operation exp(tAp) V ( r )  f o r  more general q ( r )  than t h a t  allowable by 

(1.4). 
p = n 
form. The f i n a l  result permits an in te rpre ta t ion  even i f  p fa i l s  t o  be 

an in teger .  

The In tegra l  Representation f o r  the Solution. Let u s  now in t e rp re t  t h e  

T h i s  can be accomplished by transforming t h e  Poisson formula i n  

dimensional space i n  rectangular coordinates t o  t h e  r a d i a l l y  symmetric 

We simply ou t l ine  t h e  derivation here. 
- 

L e t  r denote t h e  n-vector (rl, ..., rn) and l e t  F 0 'f denote 

n - 1 - -  
t h e  sca l a r  product 1 X i '  s i  . Let r = ( F o r ) 2  and d< = d<,*=- dEn' 

i=l 

Now t h e  Poisson formula i n  rectangular coordinates i s  j u s t  

where En denotes all of  n-space. Let denote t h e  angle between t h e  

vectors  F and so t h a t  (r - t ) o ( F  - Z) = r + E2 - 2r < cos . 2 

Taking n 2 - 2, we introduce t h e  spherical coordinates 

i n  (3 .1)  with O <  - < ( 0 3 ,  0 2 0 ,  SIT,  i =1, ..., n - 2, and 

0 I en-1 - < hr . The Jacobian o f  t h i s  transformation i s  

n-1 n-2 J = < s i n  

( E ,  el, . . . , ) 

0 sinn-' e2- .  s in  en - and w e  must evaluate t h e  i n t e g r a l  1 

n-3 €I2-=.sin 0 e l l s in  de --.den-l . n-2 
n-2 1 J"... J~ lexp [ 5 cos 8 1 1 s in  

0 0  0 

By successive reductions of  this through use of t h e  
de f in i t i on  of t h e  modified Bessel functicn (3.1) reduces t o  

Beta function and t h e  
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with t h e  kernel - 

O f  course, su i t ab le  continuity and growth r e s t r i c t i o n s  a r e  needed on 

i n  (3 .2)  t o  ensure t h a t  t h e  in t eg ra l  converges. We can now replace n 

by i n  (3 .2)  and (3 .3) .  For future reference, w e  note t h a t  f o r  t > 0, 

c p ( < )  

p 

0 i f  p > 1  

(4.n )" S l ( r , t )  
1 

if p = 1 . 
(b)  l i m  K (r,<;t) = 

< + o  

From t h e  f i rs t  o f  these,  we can thus at tach a meaning t o  K p ( O , < ; t ) .  

of t h e  sets {Rjp] and [g.'], it w i l l  be useful  t o  examine t h e  s t ruc tu re  

of  K (r,<;t) i n  terms of these  functions. This, however, will necess i ta te  

deriving some elementary propert ies  of t h e  kernel  r e l a t ing  t o  these  basic 

functions along with t h e  development o f  

functions. 

In order t o  develop representations of  solut ions of (1 .3)  i n  terms 

J 

CL 

asymptotic bounds f o r  these  basic 

We defer t h e  l a t t e r  question t o  t h e  next section. 

Theorem 3.1. Let r 3 0 and t > 0. Then 
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and thus  t h e  right-member of (3.5a) becomes 

2 The change of var iables  

of equation (5),p.135 [3] (which also y i e lds  (3.5a) with 
-ir> shows t h a t  this las t  in t eg ra l  reduces t o  

( -4t) j  j! L '' -')(r2/4t). By (2.8), t h i s  gives (3.5a). From t h e  va l id i ty  

s = E /4t along with an application of t h e  r e s u l t  

r replaced by 

j 

of t h e  result f o r  -ir i n  (3.5a), we ge t  

R . I L ( r , t )  = R . P ( i [ - i r ] , t )  = ( - l ) J R . P ( - i r 7 t )  
J J J 

= (-1)' Sa, K ( A 2 r , < ; t ) ( i < ) 2 j d <  
o p  

This i s  j u s t  t h e  representation (3.5b). 

N e x t ,  we examine t h e  important t i m e  t r ans l a t ion  property. 

Theorem 3.2 L e t  -s  < t < s and l e t  r 2 0, 71 2 0. Then - 

Proof. 

p.50 o f  [4 ]  
Both results follow through an application of t h e  formula (25 ), 

fo r  Bessel functions. The terms i n  t h e  integrand of (3.6b) 

involve t h e  functions J.. with na-negat ive arguments so t h a t  t h e  2" -1 
indicated formula appl ies  d i rec t ly .  

t o  t h e  use o f  this same formula with complex arguments through use of 

The proof o f  (3.6a) can be reduced 
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Final ly ,  w e  note f o r  l a t e r  reference t h e  interchange property 

(3.7) 

4. 
growth bounds f o r  t h e  r a d i a l  heat functions. 

( 3 . 3 )  i n  terms of such functions,  we w i l l  need t o  know i n  what sense such 

a decomposition converges. 

between these  basic functions and t h e  Laguerre polynomials. 

of t h e  elementary r e s u l t s  obtained i n  [ 9 ] .  

0 2 r < m, 0 2 t < m, and 0 < b < m, k = 0,1,2, ... , 

Growth Bounds and t h e  Kernel Decomposition. L e t  us now examine 

In decomposing t h e  kernel 

The bounds we obtain depend upon t h e  connection 

We need some 

Lemma 1. If 
then it follows t h a t  

Now, it i s  known t h a t  i f  a 2 0 and x 2 0, then - 

By an appl icat ion of  S t i r l i n g ' s  formula, there  e x i s t s  a constant A > 0 

such t h a t  f o r  a l l  k 

and w e  ge t  t h e  result: 

Lemma 11. For r 2 0, t > 0, there  e x i s t s  a constant A such t h a t  - 
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when u > - 8 and r > 0 (p.14 of [&I7 formula ( 4 ) ) ,  we have 

(4.3) 

We now have suf f ic ien t  information t o  get  a t  t h e  desired decomposition 

of K ( r ,q; t+s) .  

given later. 

A fur ther  growth bound on t h e  r ad ia l  polynomials will be 
P 

Lemma IV.  Let s > 0, < > 0, and 7 > 0. Then w e  have 
- - - - 

The replacement of < by i< i n  t h i s  a l so  leads  t o  a correct  r e su l t .  

Proof. This r e s u l t s  from collecting t h e  coef f ic ien ts  of  l i k e  powers of  

Thus < i n  t h e  s e r i e s  expansion f o r  KP(<,q;s) .  
29 
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4 
The reduction t o  R P(-q,s) o f  t h e  

s e r i e s  follows d i r ec t ly  from (2.3) 
replaced by i e  holds since a l l  

j 

s > o .  

bracketed term i n  t h e  next t o  t h e  l a s t  

and t h e  remark following it. 
functions involved here a r e  e n t i r e  f o r  

The result with 

We now come t o  t h e  main decomposition theorem f o r  

Theorem L.1. L e t  s > 0 and It1 < s. If r, 7 2 0, w e  have 

K 
P' 

KP(r,Q;t+s) = W 
P 

(4.5 1 

and t h e  r e s u l t  follows by (3.5b) provided t h a t ,  say, 
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Introducing t h e  bounds given i n  (4.1) and (4.2), this series i s  dominated 

by t h e  sum 

where 

( J =  f 
1 =O 

A 

But 

Now, by t h e  argument as used i n  Case (a),  w e  ge t  convergence of t h e  

dominating ser ies .  

We can now make an appl icat ion o f  (3.7) along with (4.5) t o  g ive  
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fu r the r  decompositions. 

we can interchange t h e  arguments r and 11 under t h e  sign of summation i n  

t h e  right-member of (4.5). 

Using t h e  same hypotheses as those  i n  theorem 4.1, 

The factor W ( v )  ranains  unaltered i n  t h i s .  
I.L 

Fina l ly ,  l e t  us no te  from (2.8) and (2.10) t h a t  t h e  r e l a t i o n  (4.5) 
reduces t o  

f o r  It1 < s and p = 2(a+l). Compare t h i s  with t h e  r e l a t i o n  ( 2 0 ) ,  p.189 of 

[41. 

5. The Coefficient Behavior i n  Convergent m a n s i o n s .  In t h i s  section 
w e  state results r e l a t i n g  t o  t h e  behavior of t h e  coe f f i c i en t s  involved 

i n  convergent expansions i n  terms of t h e  sets { R j p ( r , t ) ]  and {%.I.L(ryt)]. 

Such knowledge permits a characterization of  t h e  regions of validity of 

ce r t a in  types  of expansions i n  terms of constants re la ted  t o  an e n t i r e  

funct ion ( t h e  order and t h e  type).  

results are similar t o  those i n  

most cases,  these  proofs are omitted except where a difference arises be- 

cause of t h e  d i f f e ren t  underlying set  of basic  function. 

J 

The methods f o r  proving many of these  

[9] but  depend upon d i f f e ren t  bounds. In 

W 

Lemma 5.1. Suppose t h a t  t h e  se r ies  a . R  p(r , t)  converges a t  
~j 

j =O 

(rOytO) f o r  ro > 0, to> 0. Then 

(5.1) a = O  e ]’+‘I as j - m .  
j { [ 4t0{: -1+jj 

Proof. By t h e  assumed convergence of t h e  series a t  

results that the re  exists a pos i t ive  constant M such t h a t ,  f o r  a l l  j ,  

(a .R.p(rOytO)l  5 M. Then f o r  a l l  suf f ic ien t ly  l a rge  j, 

(ro,t0), it 

J J  
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We have j u s t  made use of S t i r l i n g ' s  formula i n  the  l a s t  step. 

bound is just a restatement of (5.1). 
same form regardless  of  t h e  pa r i ty  of k i n  %'(r,t). 
bounds change i n  t h e  case of t h e  usual heat polynomials 

t h e  evenness or oddness o f  k. 

Remark. 

@[ e/(4toj  ) 1' fo r  

t o  be usefu l  l a t e r  when converse results a r e  given. 

T h i s  f i n a l  

by (2.4) have t h e  The lower bounds 

The forms of these  lower 

vk (x , t )  according t o  

Thus, we get  a s implif icat ion here. 

Since p - > 2, it follows tha t  we could obtain t h e  l a rge r  bound o f  - 

l a j  I. T h i s  l a rger  and simpler expressed bound will prove 

Our next r e s u l t  on t h e  behavior o f  t h e  coef f ic ien ts  a depends upon 
j 

t h e  F e j e r ' s  asymptotic formula for the  generalized Laguerre polynomials [lo]. 

L e t  x e  [ E , W ] ,  E > 0. Then as j + 03, 

Through use of t h e  connection (2.8) we have: 

2 Lemma 5.2. Let t > 0 and r e s t r i c t  r /4t t o  some f i n i t e  i n t e r v a l  

[ E , w ] ,  E > 0. Then as  j 4 a y  

With this, we can immediately obtain 

Lemma 5.3. Let to > 0 and 0 < E~ a 1. r 5 b and suppose t h a t  
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03 j+& 

>1 a.R %,-to) converges f o r  r ([a,b]. Then a . =  0 k-$-lj) 
--I ~j J j = O  

Theorem 5.1. L e t  {a Im be a sequence of complex numbers such j j=O 

converges absolutely i n  t h e  time s t r i p  I t  I < u and not everywhere i n  any 

l a r g e r  s t r i p .  

- Proof. 

This s t r i p  s i z e  i s  independent of p.  
This follows by a dominated convergence proof by using t h e  

bounds on 

bound (4.2a) i f  t i s  negative. 
laj I i n  t h e  hypothesis and t h e  bound (4.1) i f  t 2 0 and t h e  

Definit ion 5.1 An e n t i r e  function i s  o f  growth ( p , ~ )  i f f  

Definit ion 5.2 A function u ( r , t )  s a t i s f i e s  condition H i n  a 
domain aif u ( r , t )  i s  continuous and satisfies (1.3) i n  &. 

Theorem 5.2. L e t  a.R Cl(r,t) converge t o  some function 
J j  

j =O 

u ( r , t )  for  It1 < cr. Tben u ( r , t ) a  i n  t h i s  s t r i p  and u( r ,O)  i s  an even 

function which i s  e n t i r e  with growth (1, l/&) i n  r 2 . 
Proof. The uniform convergence of t h e  s e r i e s  t o  a solution function 

u ( r , t )  follows d i r e c t l y  by t h e  usual application of Harnack's theorem f o r  
temperature functions only modified t o  t h e  R i p ( r y t ) .  A t  t = 0, this 

s e r i e s  converges t o  
J 

m 

j=O 

an even function o f  r. L e t  to be selected such t h a t  Ito] < cr. 

men  la-l  < M ce/41tolj) ' f o r  j su i tab ly  l a rge  and 

j+  cL-1 
J =  
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Now l e t  It0 I+ CJ t o  get  t h e  theorm. 

We a l so  have t h e  analogous theorems holding f o r  expansions i n  terms 
l J P  

J 
of t h e  R.  (r,t). 

Theoran 5.3. If l i m  sup y l b j  I = C J  < 00, then 

1 b .% (r,t ) converges absolutely i n  t h e  half-plane t 

j + m  
CO 

J j  
j =O 

where i n  any including s t r i p .  
co 

Theorem 5.4. L e t  1 b.?i '(r,t) converge f o r  
J j  

j =O 

u ( r , t ) & H  i n  this half-plane. 

t h e  series 

> (J and not every- 

t > o  2 0. Then 

6. Exp ansion Theory Preliminaries. 

given most of  t h e  e s sen t i a l  background f o r  t h e  formal work i n  developing 

expansions of solut ions of (1.3) i n  terms of t h e  s e t s  {Rjp] and {Xjp] . 
Not all of  these  expansions are meaningful, however. A s  an example, when 

p = 3, t h e  function l/r, r 0, s a t i s f i e s  (1.3) f o r  a l l  t. This function 

has a formal expansion i n  terms of the  set { R j 3 ( r , t  >] . If such an ex- 

pansion converges a t  t = 0, it converges t o  an even function, which i s  a 

contradiction, and i f  t h e  series diverges a t  t = 0, t h e  expansion i s  
meaningless there.  

In  t h e  previous sections,  w e  have 

We therefore  need t o  be able  t o  select appropriate c lasses  of solut ions 

of (1.3) each member 

these basic  heat functions which converges uniformly i n  some domain t o  

u ( r , t ) .  Or" necessity,  these w i l l  be analyt ic  i n  

appropriate time range 

u ( r , t )  o f  which can be represented by a series of 

r2 f o r  r > - 0 i n  t h e  - 
( in  n-space, n in teger  and n > 2 i f  

2 2 r2 = 5 + ... + xn , then only even powers of r a r e  ana ly t ic  i n  

(xl, . . . , xn) i n  a neighborhood of t h e  o r ig in ) .  In  order t o  determine these  
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classes ,  we give t h e  following def ini t ions.  

Definition 6.1. (The Huygen's Pr inciple) .  A function u ( r , t )  s a t i s f i e s  

t h e  Huygenls pr inc ip le  f o r  r 2 0 and a < t < by and we write u&H*, i f  

u E H  i n  t h i s  domain and u s a t i s f i e s  t h e  semi-group property 
- 

(6.1) 
m 

t l <  t < b. 

Definit ion 6.2 (Absolute I n t e r a b i l i t y  Condition). 

r s a t i s f i e s  t h e  condition of absolute in t eg rab i l i t y  f o r  

A function u ( r , t )  

>O - and a < t < by - - 
and we write ucA,  i f f  U G H  and there  exists a pos i t ive  function M(a ' ,b ' )  

defined f o r  a < a' < bl < b such tha t  

(6.2) 

The basic  result r e l a t ing  these def ini t ions t h a t  appears t o  be essen t i a l  in 

t h e  expansion theory i s  given by 

Theorem 6.1. Let a d e n o t e  t h e  domain r > 0, a < t < b. Then 

u€H* i n  & i f  and only i f  U E A  i n  8 - - 

The analogous theorem i s  proved in  d e t a i l  i n  [9]  and i s  based primarily 

on t h e  existence o f  a Poisson-Stielt jes i n t e g r a l  representation f o r  cer ta in  

absolutely integrable  solutions of (1.1). Two important r e s u l t s  used i n  

t h i s  proof a r e  ( a )  every solution of (1.1) t h a t  grows no more rapidly than 
n 

KeAXC, K and A non-negative constants, f o r  a < t < b s a t i s f i e s  t h e  Huygen's 

pr inc ip le  over t h e  pa r t  of t h i s  t i m e  range i n  which t h e  corresponding 

i n t e g r a l  converges absolutely (Lemma 6.2 o f  [ 91)and (b)  every absolutely 

integrable  solution of (1 .3 )  i s  bounded i n  growth by such an exponential 

function. 

while (b )  i s  based upon growth bounds r e l a t ed  t o  t h e  kernel involved i n  

i n t e g r a l  representations o f  solutions o f  (1.1). 

analogous results ( a )  and (b)  f o r  t h e  problem involving (1 .3 )  with corres- 

ponding kernel  K ( r ,<; t ) ,  then we can use t h e  reasoning o f  [ 9 ]  t o  prove 
c1 

OUT Theorem 6.1. 
mentary lemmas. 

The proof of ( a )  i s  based upon t h e  Tychonoff theorem ( [ 7 ] ,  p.183) 

If we can es tab l i sh  t h e  

We lead up t o  these r e s u l t s  through a sequence o f  ele- 
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Lemma 6.1. L e t  R > 0 and l e t  DR denote t h e  rec tangle  

O < r < R  a n d O < t < c .  Let B = E R  - DR t h e  boundary. Then i f  

(i) u ( r , t ) E H  i n  DR and (ii) - u ( r , t )  > - 0 fo r  ( r O , t o ) c B ,  it follows 

- - 
l i m  

r +r0 - 

t AtO 

R' t h a t  u ( r , t )  > 0 i n  D - - 
Proof. 

Theorem 5.2, p. 184 of  [ 7 ] .  

domain D R 
a t  r = 0. 

a t  r = 0 

The argument needed here i s  similar t o  t h a t  i n  t h e  proof o f  

The omission of  t h e  segment r = 0 from t h e  

i s  required because of t h e  s ingu la r i ty  i n  t h e  equation (1.3) 
Also, i f  p = 3 ,  t h e  function l/r f a i l s  t o  s a t i s f y  condition (i) 

but does sa t i s fy  t h e  conclusion of  t h e  lemma. 

Lemma 6.2. L e t  x > 0 and l e t  p > 2. Then w e  have - - - - 

where b = a /[2'/"$(9) r ( y ) ]  with a = 1 if p > 3 and 

a = 2 2 i f  2 5 p < 3. The right-member of  (6 .3 )  i s  a monotone in-  

creasing function of  x which has the f i n i t e  non-zero l i m i t  b ). 

- P P  P' 
k 2  

P 

P 

Proof By exercise 16, p. 121 [8] ,  we have 

I 
J$ -1 

The f a c t o r  

p p - 1  L A 3  
- - X s1 (1-s2) cosh s x ds. 3 -2r(+)r (9) 0 

IL-3 
(l+s) o f  t h e  integrand o f  t h i s  l a s t  i n t eg ra l  has t h e  lower 

bound a on [0,1]. Then 
P 
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where w e  have used t h e  f a c t  t h a t  cosh s x > - eSX/2. 

this l a s t  inequal i ty  by t h e  change of var iables  (1-s) x = <. 
The result f o l l o w s  from - 

From t h i s ,  we have t h e  d i r ec t  consequence 

Lemma 6.3. L e t  R 2 0 and l e t  0 < t 2 c. Then we have 

Lemma 6.4. (Modified Tychonoff Theorem). Let t h e  following conditions 

be sa t i s f i ed :  (i) u ( r , t ) € H  i n  0 < t 5 c f o r  r > 0; (ii) u ( 0 , t )  = 0, 

O < t 5 c; (iii) l i m  u ( r , t )  = O for  all ro, o 5 ro < m; - r 4 ro 
t 4 0 +  

maX 2 
(id f ( r )  = 0 < 
some a. Then u ( r , t )  = 0 throughout t h e  s t r i p  0 < t < c , r  2 0. 

I lu ( r , t ) l ;  and (v) f ( r )  = O(em ) a s  r 4  f o r  

- - 

Proof. L e t  R > 0 and define t h e  auxi l ia ry  function U R p ( r , t ) :  

lemma 6.1, it follows t h a t  t h e  pa i r  %’(r,t) 2 u ( r , t )  > - 0 i n  DR or  

- U R p ( r , t )  u ( r , t )  2 U R p ( r , t )  i n  D Fix r < R and l e t  R+ 03. By 

appl icat ion of t h e  growth bound (4 .3) ,  w e  have 

- 

R’ 

r-R 2 (T) 
u z ( r , t )  5 + e f ( R ) .  

- b’(4t) 5- ( ~ ) A ( R )  

Since A ( R )  tends t o  a finite-non zero l i m i t  a s  R+ m, it f o l l o w s  t h a t  

UR’(r,t)-> 0 provided 4at < 1. If c i s  i n  t h i s  time range, t h e  proof 



- 21 - 

i s  complete. If c i s  not i n  t h i s  range, replace t h e  condition (iii) a t  
t = 0 by t h e  same condition a t  

t h e  above arguments a su f f i c i en t  number of times. 

t = b, b > 0 and 4ab < 1. Then repeat 

We now make use of t h e  following inequality,  noted i n  [ 9 ] ,  namely: 

if A,  x, and y a r e  real numbers i n  (- m,m), 0 < t < m, and 1 -ut > 0, then 

Lemma 6.5. L e t  t '  < t < to. Then w e  have 

(6.6) 

If w e  apply (4.3) t o  K (r,<;t-t '),  it follows t h a t  t h e  l e f t  member of 

(6.6) i s  bounded by 
P 

Upon applying t h e  inequal i ty  (6.5) t o  t h e  second exponential ( i t s  argument), 

w e  obtain t h e  r e s u l t  (6.6). 
With these  lamas avai lable ,  we now have t h e  e s sen t i a l  t oo l s  f o r  

applying t h e  arguments i n  2 6 of  [ 9 ]  t o  prove 

Theorem 6.2. Let u ( r , t )  s a t i s fy  t h e  conditions: 
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These a r e  necessary and suf f ic ien t  t ha t  u ( r , t )  have t h e  Poisson-Stielt jes 

i n t e g r a l  representation 

With this, we conclude our treatment leading up t o  t h e  proof of our 

Theorem 6.1. 
which i s  bounded by K$lr2 
there ,  t h e  condition (ii) of lemma 6.4 t r ans l a t e s  i n to  

We only note t h a t  i n  proving tha t  any solution u ( r , t )  of (1.3) 
f o r  a < t < b s a t i s f i e s  t h e  Huygen's pr inc ip le  

T h i s  ind ica tes  t h e  s t ruc tu re  demanded o f  u 
In  pa r t i cu la r ,  i f  r = 0 

this condition t o  redefine u there. 

a t  t h e  s ingular  point r = 0. 

i s  a removable singular point,  then w e  can use 

We conclude t h i s  section with two  theorems. One of these  relates t h e  

t i m e  independence of cer ta in  in tegra ls  t o  t h e  Huygenls pr inc ip le  and t h e  

other  shows t h a t  t h e  basic r a d i a l  heat functions {Rr] and {@) s a t i s f y  

t h e  Huygen I s principle.  
J 

Theorem 6.3. Let u ( r , t ) € H  * fo r  a < t < b and l e t  v ( r , t ) c H  * 
Assume fu r the r  t h a t  t h e  following condition maintains 

a < t < t l  < b: 

f o r  a < - t < b. 

for  

00 

Then t h e  function g ( t )  = J W ( < ) u ( < , t ) v ( < , - t ) d <  i s  independent o f  t i n  (a ,b) .  
O F  

Proof.  By writing a s imi la r  expression f o r  g ( t  7 with, say, 
t *> t and a < t *< b, w e  can show, by replacing u ( r , t  * )  by 
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K p ( r , < ; t * - t )  u(5,t)dC (under t h e  hypothesis) i n  t h i s  i n t eg ra l  f o r  g( t*) .  
JOrn 

Upon interchanging t h e  order of integrat ion i n  t h i s  (permissible by t h e  con- 

vergence hypothesis), we find that t h e  expression f o r  g ( t  ) reduces t o  t h e  

one f o r  g ( t ) .  The interchange property (3.7) and t h e  conditon ~ € 8  a r e  

needed t o  complete t h e  reduction a f t e r  t h i s  interchange has been made. 

* 

T h e o r a  6.L. (a )  All members of [R.'] a r e  i n  H" f o r  a l l  t ( r e a l )  
J 

and (b)  all members of  Gj'] are i n  H* f o r  t > 0. 

Proof (a) We could give t h i s  proof by resor t ing  t o  in t eg ra l s  of 
spec ia l  functions d i rec t ly .  However, l e t  us use t h e  def in i t ion  (2.3) 

and t h e  result (3.5b). F'rom (2.3)  we have f o r  t > t ' ,  

The inner  sum i n  t h i s  l a s t  double sum reduces t o  [ 1) (4t)  j-' so  t h a t  

t h i s  l a s t  sum gives R '(r,t) by (2.3) and we have proved ( a ) .  
j 

(b). This can be proved eas i ly  by appl icat ion of  Theorem 6.1. 
However, l e t  us give a proof by means o f  a generating function. 

t > t '  > 0 and se l ec t  a 2 0 with 4a < t ' .  Then by (2.1) and (2.5) 

Let 
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this last holding by (2.11). However, i f  we replace Sp(< , t '+  4a) i n  t h i s  

i n t e g r a l  by i t s  series expansion and interchange t h e  orders of in tegra t ion  

and summation, we obtain formally t h a t  t h i s  i n t eg ra l  reduces t o  

and 

above i s  permissible i f ,  say, 

(b) follows by comparing t h e  sums i n  (6.7) and (6.8). The interchange 

By ( 4 . 3 )  and (4.2b), we can obtain a sum which aominates t h i s .  

converges i f  

This sum 

&/t'< 1 as is  eas i ly  shown by t h e  r a t i o  t e s t .  

7. The Expansion Theorems. 

basic theorems on t h e  expansions o f  solutions o f  (1.3) i n  terms of t he  

sets {R.'] and {gjp]. The th ree  theorems given a re  analogous t o  theorems 

11.1, 12.3, and 12.1, respectively,  of [ 9 ] .  

We a r e  f i n a l l y  i n  t h e  posit ion t o  give t h e  

J 
The t h i r d  theorem character izes  

solut ions 

{ffjp] i n  terms of an in t eg ra l  related t o  the  Hankel transform. We have 

developed,in t h e  preceding sections,  the  counterparts t o  a l l  o f  t h e  

e s sen t i a l  elements entering i n t o  t h e  proofs of Theorems 11.1 and 12.3 

of [ 9 ] .  
order t o  avoid unnecessary duplication o f  e f for t .  

u ( r , t )  of (1.3) t h a t  have convergent expansions i n  t h e  set 

, 

Therefore, w e  omit t h e  proofs of t h e  first two theorems given i n  

Theorem 7.1. A necessary and suf f ic ien t  condition t h a t  
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(7.1) 
03 

u ( r , t )  = 1 a.R.’(r,t) , 
J J  

j=O 
9 

t h e  s e r i e s  converging i n  t h e  s t r i p  It I < (J, is  t h a t  

Moreover, t h e  coef f ic ien ts  a i n  t h i s  a r e  given by 

u ( r , t k H  i n  t h i s  s t r ip .  

j 

Theorem 7.2. A necessary and suf f ic ien t  condition t h a t  

03 

j=O 
t h e  series converging i n  t h e  upper half-plane t > (T > 0 i s  t h a t  - - 

9 co 2 
u ( r , t ) € H  and t h a t  lo < e’ /8t lu (< , t )  Id< < 03 i n  t h i s  half-plane, 

Moreover, w e  have 

Theorem 7.3, A necessary and suf f ic ien t  condition t h a t  u ( r , t )  have 

t h e  representation (7.3), t h e  series converging fo r  t > (J > 0 i s  t h a t  - - 

2 
where c p ( < )  i s  an e n t i r e  function of growth (1,a) i n  ( . The expression 

(7.5) can be wri t ten a l te rna t ive ly  a s  

where g-F,$ ( r ) )  denotes t h e  Hankel transform of $ (r). Moreover, 
d 

t h e  b i n  (7.3) are given by b = cp(2’)(0)/[(-~)’(2j)!] 
j j 
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proof. ( a )  Sufficiency. Now we have, by t h e  in t eg ra l  representation 

(3.5a) and t h e  Appell transform 

and iander t h e  change of  var iables  -ll = 2<t ,  t h i s  becomes 

%'!(r,t) = J w  (-4< ) j r J ( r < ) e  -'" (&)'l2d< . 
IL -1 
2 

0 J 
(7.6) 

0 

By writ ing c p ( < )  = 1 a.c2j  and subs t i tu t ing  in to  t h e  i n t e g r a l  
.l 

(7.5 ) w e  obtain 

with b = (-4)-jaj = cp ( 2 '  ) ( O ) / [  (-4)'(2j )! ] . The above interchange of 
j 

summation and in tegra t ion  i s  va l id  i f  

T h i s  i s  dominated by t h e  in t eg ra l  

Jow<p/2 e-,2"( laj  1<2j)dI which converges, because t h e  
j =O 

growth condition on c p ( < )  implies t ha t  t h e  inner  sum i s  bounded by 
2 

Me' t ' ,  t '  < u < t ,  f o r  some M > 0. 
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00 

(b)  Necessity. Assume t h a t  b . p ( r , t )  converges. 
J J  

j =o 
W 

Take c > u. By (2.10) t h e  s e r i e s  1 I..”(.,-t) / t2j)  converges 
J J  j=O - 

ce for a l l  r > 0 on t = c and by lemma 5.3, bj  = O[  (43) - - 
OD 

Then u ( r , t )  = 1 b%!(r,t) 
J J  

j =O 

P/2 e-‘2t ( f [bj I ( ~ + < ~ ) j ) d <  < OD t o  give va l id i ty  t o  t h e  above 
j =O 

representation. But from our  growth bound on b as j -+ a, w e  have 
j 

- l / j  
l i m  sup 
j+  m J j 4 m  

la. 1’” = l i m  sup ,i lAJbj I 2 c < CJ . e 

2 Thus cp(<)  i s  an e n t i r e  fupction of  growth ( l , ~ )  i n  5 . 
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